Sign up with your email address to be the first to know about new products, VIP offers, blog features & more.

The Randall-Sundrum Model, a Brane-Singularity Problem and AdS-Compactification

Let no man who is not a mathematician read the elements of my work ~ Leonardo da Vinci

In my last post, I analyzed a relationship between the AdS/CFT correspondence and the Randall-Sundrum brane-world ‘model‘, where the brane-world five-dimensional action is

    \[\begin{array}{c}S = \int {{d^5}} x\sqrt { - {g_{\left( 5 \right)}}} \left[ {{M^3}{R_{\left( 5 \right)}} - \Lambda } \right]\\ + \int {{d^4}x} \sqrt { - {g_{\left( 4 \right)}}} \widetilde {\not L}_{{\rm{BRANE}}}^{{\rm{Lag}}}\end{array}\]

with M being the five-dimensional Planck mass, {M^3} = 1/\left( {16\pi {G_5}} \right), and \Lambda is the cosmological constant in the bulk, yielded us, via small fluctuations of the metric on the brane

    \[\begin{array}{c}d{s^2} = {e^{ - 2\left| y \right|/L}}\left[ {{\eta _{\mu \nu }} + {h_{\mu \nu }}\left( {x,y} \right)} \right] \cdot \\d{x^\mu }d{x^\nu } + d{y^2}\end{array}\]

with L being the radius of AdS, defined by

    \[R_{MNPQ}^{\left( 5 \right)} = - \frac{1}{{{L^2}}}\left( {g_{MP}^{\left( 5 \right)}g_{NQ}^{\left( 5 \right)} - g_{MQ}^{\left( 5 \right)}g_{NP}^{\left( 5 \right)}} \right)\]

and then deduced the crucial relation \Lambda = - 12{M^3}/{L^2}, which yields the CFT-brane relation

    \[\begin{array}{l}{h_{\mu \nu }}\left( p \right) = - \frac{2}{{L{M^3}}}{\Delta _3}\left[ {{T_{\mu \nu }}\left( p \right) - \frac{1}{2}{\eta _{\mu \nu }}{T^\alpha }_\alpha \left( p \right)} \right]\\ - \frac{1}{{{M^3}}}{\Delta _{KK}}\left( p \right)\left[ {{T_{\mu \nu }}\left( p \right) - \frac{1}{3}{\eta _{\mu \nu }}{T^\alpha }_\alpha \left( p \right)} \right]\end{array}\]

possessing real physical meaning, as can be seen by

the fact that the four-dimensional massless propagator {\Delta _4}\left( p \right) corresponds exactly to the zero-mode graviton, localized on the brane, while

    \[{\Delta _{KK}}\left( p \right) = - \frac{1}{p}\frac{{{K_0}\left( {pL} \right)}}{{{K_1}\left( {pL} \right)}}\]

being the propagator for the continuum Kaluza–Klein graviton modes, gives us an analytic relation between four-and-five-dimensional Newton’s constants. So, at large distances, corresponding to pL \ll 1, a small-argument expansion for Bessel functions gives us

    \[\begin{array}{c}{\Delta _{KK}}\left( p \right) = \frac{L}{2}\left( {{\rm{In}}\frac{{{p^2}{L^2}}}{4} + 2y} \right) + \\\vartheta {\left( p \right)^2}\end{array}\]

Thus, by evaluating the Fourier transform for r \gg L we get the linearized metric

    \[\left\{ {\begin{array}{*{20}{c}}{{h_{00}} = \frac{{2Gm}}{r}\left( {1 + \frac{{2{L^2}}}{{3{r^2}}} + ...} \right)}\\{{h_{ij}} = \frac{{2Gm}}{r}\left( {1 + \frac{{{L^2}}}{{3{r^2}}} + ...} \right){\delta _{ij}}}\end{array}} \right.\]

giving ‘real’ physical meaning to the Newtonian potential: hence the 1/{r^3}corrections to Newton’s law are identical between the Maldacena ‘model’ and Randall–Sundrum ‘model’ which entails a deep classical/quantum duality expressed by

    \[\prod {_2} \left( p \right) + \vartheta \left( {{G^2}} \right) = \frac{L}{4}{\Delta _{KK}}\left( p \right)\]

However, let me describe a serious problem related to a type of singularity and solve it by RR-compactification on an AdS minus a CFT-brane, with no loss of metaplectic content. As was shown, the AdS/CFT correspondence implies that the RS model is isomorphic to a four dimensional gravity coupled to a strongly interacting CFT. First note that on the RS side, the singular brane in the bulk is very crucial for the two massless modes and two towers of continuum-massive-modes on AdS, and so the field equations pick up a delta function source and the RS background constitutes a solution: the problem now is that we lose the delta function because the brane lives on the boundary, and it would follow that the brane-action cannot modify the field equations which are deduced by fixing the metric on the boundary thus one cannot include the degrees of freedom corresponding to the path integral. I will try a solution based on replacing the brane-action in the bulk with a term proportional to the area of the boundary of the compactified AdS space.

Before proceeding, keep this following relation in mind, it is as deep as it gets

    \[\begin{array}{c}Z\left[ \gamma \right]{e^{i{S_1}\left[ \gamma \right]}}\exp \left[ { - \frac{i}{{8\pi {G_{d + 1}}}}} \right.\int_{\partial M} {\sqrt { - \gamma } } \\\left( {\frac{{d - 1}}{l}} \right. + \frac{l}{{2d - 4}}{R_{icci}} + \left. {\left. {...} \right)} \right] \cdot \\{\left\langle {{e^{i{\gamma _{\mu \nu {T^{\mu \nu }}}}}}} \right\rangle _{CFT}}\end{array}\]

In d + 1-dimensions, the field equations for gravity with a negative cosmological constant Λ are

    \[{R_{AB}} - \frac{1}{2}{G_{AB}}R = \Lambda {G_{AB}}\]

that admit the AdS space

    \[d{s^2} = \frac{{{l^2}}}{{{z^2}}}\left( {d{z^2} + {\eta _{\mu \nu }}d{x^\mu }d{x^\nu }} \right)\]

as a solution with {l^2} = - d\left( {d - 1} \right)/\left( {2\Lambda } \right) and taking z as the radial coordinate, AdS space can be interpreted as the metric of a domain wall that models our observable universe located at an arbitrary radial position, and spanned by the coordinates {x^\mu }. It is clear that without matter, the metric on the domain wall is flat. With matter on the wall, one would replace the flat metric {\eta _{\mu \nu }} with a curved metric {g_{\mu \nu }}(x), hence recovering the two basic properties of gravity without a cosmological constant. Now, from an effective action point of view, in d + 1- dimensions the action is

    \[\begin{array}{c}S = \frac{1}{{16\pi {G_{d + 1}}}}\int_M {\sqrt { - G} } \left( {R - 2\Lambda } \right)\\ + \frac{1}{{8\pi {G_{d + 1}}}}\int_{\partial M} {\sqrt { - \gamma } } K\end{array}\]

with {G_{d + 1}} the Newton’s constant and {\gamma _{\mu \nu }} the boundary-metric, yielding a Chern-Simons constant a, giving us the modified action

    \[{S_1} = \frac{a}{{16\pi {G_{d + 1}}}}\int_{\partial M} {\sqrt { - \gamma } } \]

which is proportional to the area of the boundary.  The condition for the metric is

    \[d{s^2} = \frac{{{l^2}}}{{{z^2}}}\left( {d{z^2} + {g_{\mu \nu }}(x)d{x^\mu }d{x^\nu }} \right)\]

and even though the boundary is located at z = 0, a solution is gotten by cutting the asymptotic region at the surface z = \varepsilon and let the space be denoted by Ad{S_\varepsilon }. By inserting

    \[d{s^2} = \frac{{{l^2}}}{{{z^2}}}\left( {d{z^2} + {g_{\mu \nu }}(x)d{x^\mu }d{x^\nu }} \right)\]

into the total action S + {S_1} and picking al = - 2\left( {d - 1} \right), one gets

    \[S + {S_1} = \frac{1}{{16\pi {G_d}}}\int {{d^d}} \_\sqrt { - \gamma } {R_{icci}}\]

with the d-dimensional Newton’s constant is given by

    \[{G_d} = \left( {s - 2} \right)\frac{{{\varepsilon ^{d - 1}}}}{{{l^{d - 1}}}}{G_{d + 1}}\]

To get an effective action that describes pure gravity without a cosmological constant, we start with the total action S + {S_1} where the free parameter a in {S_1} is fixed by al = - 2\left( {d - 1} \right).

The central point now is that in the RS model,  {S_1} has been replaced with a singular brane action

    \[S = \tau \int_\Sigma {\sqrt { - \gamma } } \]

coupled to the gravity, where \Sigma is the world-volume embedded in the bulk, and the key point is that the tension \tau of the brane would be fine-tuned, pushing the cosmological constant problem into the brane! A solution suggests itself by noting that {S_1} with coefficient in al = - 2\left( {d - 1} \right)

come from an AdS-compactification of string/M theory, thus getting a conformally invariant graviton 2-point function using AdS/CFT duality, in turn solving the cosmological constant problem not by fine tuning but by the presence of a critical boundary action induced by such compactification. 

Hence, from

    \[d{s^2} = \frac{{{l^2}}}{{{z^2}}}\left( {d{z^2} + {g_{\mu \nu }}(x)d{x^\mu }d{x^\nu }} \right)\]

we get

    \[\begin{array}{c}{R_{ABCD}}{R^{ABCD}} = \frac{{2d\left( {d + 1} \right)}}{{{l^4}}} + \\\frac{{{z^4}}}{{{l^4}}}{R_{\mu \nu \sigma \rho }}{R^{\mu \nu \sigma \rho }}\end{array}\]

with {R_{\mu \nu \sigma \rho }} the curvature tensor of {g_{\mu \nu }},

which indicates a generic curvature singularity on the ‘horizon’

at z = \infty. A solution can be achieved by insersion of a wall located at a finite z value, giving rise to a radial coordinate compactified on a line, which is quasi-morphic to a Horava-Witten construction in 11-dimensions,  where one coordinate of the flat Minkowski space has been compactified by two 10-branes. So, let me determine the spectrum of modes on Ad{S_\varepsilon }, implying \delta {n_A} = 0 and \delta {n^A} = 0 on \partial M, where {n_A} is the unit normal vector to the boundary. We now vary the action S + {S_1} by treating the boundary terms coming from integration-by-parts as Picard-Lefschetz terms, to obtain

    \[\begin{array}{c}\delta \left( {S + {S_1}} \right) = \frac{1}{{16\pi {G_{d + 1}}}}\int_M {\sqrt { - G} } \cdot \\\left( {{R_{AB}}} \right. - \frac{1}{2}{G_{AB}}R - \Lambda \left. {{G_{AB}}} \right)\delta {G^{AB}}\\ + \frac{1}{{16\pi {G_{d + 1}}}}\int_{\partial M} {\sqrt { - \gamma } } \left( {{K_{AB}}} \right. - \\{\gamma _{AB}}K - \frac{a}{2}\left. {{\gamma _{AB}}} \right)\delta {\gamma ^{AB}} = 0\end{array}\]

with {\gamma _{AB}} the induced metric on \partial M, {K_{AB}} the extrinsic curvature of the boundary defined by

    \[{K_{AB}} = {\gamma _A}^C{\gamma _B}^D{\nabla _C}{n_D}\]

and K = {\gamma ^{AB}}{K_{AB}}

Hence, the metric near \partial M is

    \[d{s^2} = \frac{{{l^2}}}{{{z^2}}}d{z^2} + {\gamma _{\mu \nu }}\left( {x,z} \right)d{x^\mu }d{x^\nu }\]

where the boundary is located at z = \varepsilon and n = - \left( {z/l} \right){\not \partial _z} is the unit normal vector. So the following holds

    \[\left\{ {\begin{array}{*{20}{c}}{\delta {G_{AB}} \to \delta {\gamma _{\mu \nu }}}\\{\delta {G^{AB}}{n_B} = 0}\end{array}} \right.\quad \quad {\rm{on }}\partial M\]

and the extrinsic curvature is given by

    \[{K_{\mu \nu }} = - \varepsilon /\left( {2l} \right){\not \partial _z}\gamma \left| {_{z = \varepsilon }} \right.\]

so the field equations following from \delta \left( {S + {S_1}} \right) are

    \[\left\{ {\begin{array}{*{20}{c}}{{R_{AB}} - \frac{1}{2}{G_{AB}}R - \Lambda {G_{AB}} = 0}\\{\left( {{K_{AB}} - {\gamma _{AB}}K - \frac{a}{2}{\gamma _{AB}}} \right)\left| {_{\partial M}} \right. = 0}\end{array}} \right.\]

One can thus see that Ad{S_\varepsilon } satisfies the immediate-above condition two only if the free parameter a is fixed by al = - 2\left( {d - 1} \right).

The ‘magic’ now is, the same fine tuning imposed to cancel the induced cosmological constant on the boundary is now required to have Ad{S_\varepsilon } as a solution of the theory. The metric of the wall in

    \[d{s^2} = \frac{{{l^2}}}{{{z^2}}}\left( {d{z^2} + {\eta _{\mu \nu }}d{x^\mu }d{x^\nu }} \right)\]

is now

    \[{g_{\mu \nu }} = {\eta _{\mu \nu }} + {h_{\mu \nu }}\left( {x,z} \right)\]

and with the following gauges constraints

    \[\left\{ {\begin{array}{*{20}{c}}{{{\not \partial }_\mu }{h^\mu }_\nu = 0}\\{{h^\mu }_\mu = 0}\end{array}} \right.\]

the linearized equations become

    \[\begin{array}{c}{z^2}\not \partial _z^2{\widehat h_{\mu \nu }} - \left( {d - 1} \right)z{{\not \partial }_z}{\widehat h_{\mu \nu }} + \\{m^2}{z^2}{\widehat h_{\mu \nu }} = 0\end{array}\]

and

    \[{\not \partial _z}{\widehat h_{\mu \nu }}\left| {_{z = \varepsilon }} \right. = 0\]

with {h_{\mu \nu }} = {e^{ipx}}{\widehat h_{\mu \nu }}\left( z \right) and m being the d-dimensional mass given by {m^2} = - {p^2}, hence, the solutions are

    \[\widehat h = \left\{ {\begin{array}{*{20}{c}}{{\rm{constant , }}m = 0}\\{{N_m}{{\left( {z/l} \right)}^{d/2}}\left( {{A_m}{J_{d/2}}\left( {mz} \right) + {B_m}{Y_{d/2}}\left( {mz} \right)} \right)}\end{array}} \right.{\rm{ , }}m \ne 0\]

with {N_m} the normalization constant and {A_m} = {Y_{d/2 - 1}}\left( {m\varepsilon } \right){B_m} = - {J_{d/2}}\left( {m\varepsilon } \right). Let us check the regularity and the normalizability conditions, which are given by

    \[\left\{ {\begin{array}{*{20}{c}}{\delta {G_{zz}} = 0}\\{\delta {G_{z\mu }} = 0}\\{\delta {G_{\mu \nu }} = \frac{{{l^2}}}{{{z^2}}}{h_{\mu \nu }}}\end{array}} \right.\]

viewed in d + 1-dimensional space, and note the above regularity and normalizability conditions indicate that, contrary to the gravitational waves propagating along the boundary, the ones moving through the horizon are irregular. A similar singularity arises in the Randall–Sundrum model. Let me concentrate on the problem in Euclidean signature. For normalizability, I must introduce an inner-product in the space of linearized perturbations. Noting that

    \[\begin{array}{c}{z^2}\not \partial _z^2{\widehat h_{\mu \nu }} - \left( {d - 1} \right)z{{\not \partial }_z}{\widehat h_{\mu \nu }} + \\{m^2}{z^2}{\widehat h_{\mu \nu }} = 0\end{array}\]

is the Laplacian acting on the scalars, let me define

    \[\begin{array}{c}\left\langle {h,h'} \right\rangle = i\int_\Sigma {\left( {h{{\not \partial }_\mu }{{h'}^ * } - {{h'}^ * }} \right.} {{\not \partial }_\mu }\left. h \right) \cdot \\{n^\mu }\not \partial \Sigma \end{array}\]

with where \omega \equiv {p_0}, and

    \[I\left( {m,m'} \right) = \int_\varepsilon ^\infty {dz} \frac{{{l^{d - 1}}}}{{{z^{d - 1}}}}\widehat h{\widehat h^\prime }\]

and from it, the massless mode is normalizable if and only if \varepsilon \ne 0 and for massive modes, via the Bessel’s differential equation, we get

    \[\begin{array}{c}I\left( {m,m'} \right) = \frac{{{N_m}{N_{m'}}}}{{{m^2} - {{m'}^2}}}\left[ {\frac{z}{l}} \right.\left( {{f_m}} \right.\frac{d}{{dz}}{f_{m'}}\\ - {f_{m'}}\frac{d}{{dz}}\left. {\left. {{f_m}} \right)} \right]_\varepsilon ^\infty \end{array}\]

Analyzing the z = 0 limit using the asymptotic forms of the Bessel functions, one finds

    \[\begin{array}{c}I\left( {m,m'} \right) = \frac{{\sqrt {2\pi } }}{{ml}}\left( {A_m^2 + B_m^2} \right) \cdot \\\delta \left( {m - m'} \right)\end{array}\]

now picking

    \[{N_m} = {\left( {ml/\left[ {2\omega \left( {A_m^2 + B_m^2} \right)} \right]} \right)^{1/2}}\]

the massive modes are normalized as

    \[\left\langle {h,h'} \right\rangle = {\left( {2\pi } \right)^{d - 1}}\sqrt {2\pi } \delta \left( {\vec p - \vec p'} \right)\delta \left( {m - m'} \right)\]

and since the product of the massless mode with a massive KK mode turns out to be zero since

    \[I\left( {m,m'} \right) = \int_\varepsilon ^\infty {dz} \frac{{{l^{d - 1}}}}{{{z^{d - 1}}}}\widehat h{\widehat h^\prime }\]

reduces to

    \[\begin{array}{c}I\left( {m,0} \right) \sim \int_\varepsilon ^\infty {zdz} {f_m}{z^{ - d/2}} \sim \\\frac{1}{{{m^2}}}\left[ {z\left( {{f_m}} \right.} \right.\frac{d}{{dz}} - {z^{ - d/2}}\frac{d}{{dz}}\left. {\left. {{f_m}} \right)} \right]_\varepsilon ^\infty = 0\end{array}\]

so now we see, from

    \[\left\langle {h,h'} \right\rangle = {\left( {2\pi } \right)^{d - 1}}\sqrt {2\pi } \delta \left( {\vec p - \vec p'} \right)\delta \left( {m - m'} \right)\]

that the measure on the set of continuum eigenvalues is simply dm. Since the dimensionless coordinate on Ad{S_\varepsilon } is z/l, the dimensionless eigenvalues and the measure are lm and ldm, respectively. Therefore, the graviton propagator can be gotten by superposing the modes

    \[\widehat h = \left\{ {\begin{array}{*{20}{c}}{{\rm{constant , }}m = 0}\\{{N_m}{{\left( {z/l} \right)}^{d/2}}\left( {{A_m}{J_{d/2}}\left( {mz} \right) + {B_m}{Y_{d/2}}\left( {mz} \right)} \right)}\end{array}} \right.{\rm{ , }}m \ne 0\]

given their completeness. Hence, must solve

    \[{\overline {\not \Theta } _L}\Delta \left( {x,z;x',z'} \right) = \frac{{{\delta ^d}\left( {x - x'} \right)\delta \left( {z - z'} \right)}}{{\sqrt { - G} }}\]

where {\overline {\not \Theta } _L} being the brane-bulk Laplacian and the boundary condition

    \[{\not \partial _z}\Delta \left| {_{z = \varepsilon }} \right. = 0\]

is entailed by

    \[{\not \partial _z}{\widehat h_{\mu \nu }}\left| {_{z = \varepsilon }} \right. = 0\]

This Green function is localized near the boundary, and {\overline {\not \Theta } _L} can be separated into the standard d-dimensional propagator plus a contribution coming from the exchange of KK modes, which in momentum space reads

    \[\Delta \left( p \right) = \frac{{d - 2}}{\varepsilon }\frac{1}{{{p^2}}} + {\Delta _{KK}}\left( p \right)\]

where

    \[{\Delta _{KK}} = - \frac{1}{p}\frac{{H_{d/2 - 2}^{\left( 1 \right)}\left( {p\varepsilon } \right)}}{{H_{d/2 - 1}^{\left( 1 \right)}\left( {p\varepsilon } \right)}}\]

and {H^{\left( 1 \right)}} is the first Hankel function given by {H^{\left( 1 \right)}} = J + iY. To proceed, let me start from the following path integral

    \[Z = \int {\left[ {dG} \right]} \,{e^{iS + {S_1}}}\]

summing over all metrics on M. It can be evaluated using saddle point approximation when there is an extremum of the functional S + {S_1} under these conditions

The path integral above allows us to connect the existence of a complementary picture implied by the AdS/CFT correspondence

yielding

    \[Z = \int {\left[ {d\gamma } \right]} \,Z\left[ \gamma \right]\]

with

    \[Z\left[ \gamma \right] = {e^{i{S_1}\left[ \gamma \right]}}\int {\left[ {dG} \right]} G\left| {_{\partial M = \gamma }} \right.{e^{iS}}\]

holding. And by the AdS/CFT duality, we get

    \[\begin{array}{c}Z\left[ \gamma \right]{e^{i{S_1}\left[ \gamma \right]}}\exp \left[ { - \frac{i}{{8\pi {G_{d + 1}}}}} \right.\int_{\partial M} {\sqrt { - \gamma } } \\\left( {\frac{{d - 1}}{l}} \right. + \frac{l}{{2d - 4}}{R_{icci}} + \left. {\left. {...} \right)} \right] \cdot \\{\left\langle {{e^{i{\gamma _{\mu \nu {T^{\mu \nu }}}}}}} \right\rangle _{CFT}}\end{array}\]

For a minimally coupled massless scalar field on Ad{S_\varepsilon }, one starts from the action

    \[{S_S} = \int_M {\sqrt { - G} } {\nabla _A}\phi {\nabla ^A}\phi \]

with the scalar allowed to vary on the boundary, getting

    \[\left\{ {\begin{array}{*{20}{c}}{{{\overline {\not \Theta } }_L}\phi = )}\\{{n^A}{\nabla _A}\phi \left| {_{\partial M} = 0} \right.}\end{array}} \right.\]

and in the AdS/CFT picture, the partition function

    \[Z = \int {\left[ {d\phi } \right]} \,{e^{i{S_S}}}\]

which can be calculated as thus

    \[Z = \int {\left[ {d{\phi _0}} \right]} {\left[ {d\phi } \right]_{\phi \left| {_{\partial M = {\phi _0}}} \right.}}{e^{i{S_S}}}\]

summing is over all bulk fields. By the AdS/CFT correspondence, one derives

    \[\begin{array}{c}Z = \int {\left[ {d{\phi _0}} \right]} \exp \left( {i\int {{d^d}} } \right.x\frac{1}{{2\left( {d - 2} \right)}}\\\left( {{\phi _0}\not \partial _x^2{\phi _0} + \left. {...} \right)} \right.{\left\langle {{e^{i{\phi _{0\not {\rm O}}}}}} \right\rangle _{CFT}}\end{array}\]

\not {\rm O} being the dual CFT operator. And we have a solution to the RS-singularity problem via AdS-compactification

    \[{\Delta _{KK}} = - \frac{1}{p}\frac{{H_{d/2 - 2}^{\left( 1 \right)}\left( {p\varepsilon } \right)}}{{H_{d/2 - 1}^{\left( 1 \right)}\left( {p\varepsilon } \right)}}\]

Physics is becoming too difficult for the physicists ~ David Hilbert