Sign up with your email address to be the first to know about new products, VIP offers, blog features & more.

SU(N)-Gauge-Theory from Non-Abelian Nambu-Goldstone Model

All quantum-gravity theories, most famously being String/M-theory and Loop Quantum Gravity, exhibit Lorentz invariance violation: here is why; thus posing an apriori problem in attempting a quantization of gravity: canonical or not. As I will show here, establishing an analytic-emergence relation between SU(N)-Gauge-Theory and the non-Abelian Nambu-Goldstone model (NANGM) restores L-symmetry at all Hopf-rooted-tree levels of the renormalization group algebra.

P. Aschieri’s Noncommutative Differential Geometry: Quantization of Connections and Gravity is an excellent read and a great backdrop to this post. Let me describe the non-Abelian Nambu-Goldstone model via the Lagrangian density:

    \[{L^{NG}}\left( {A_\mu ^a} \right) = - \frac{1}{4}F_{\mu \nu }^a{F^{a\mu \nu }} - {J^{a\mu }}A_\mu ^a\]

and the action-variation relative to {B^a}A_{\bar \iota }^a gives us the EoMs:

    \[\delta A_{\bar \iota }^a:\,{\Im ^{\bar \iota a}} + \frac{{{B^a}}}{{2{B^2}}}\left[ {{\Im ^{0b}} - {\Im ^{3b}}} \right]A_{\bar \iota }^a = 0\]

with the following relations holding:

    \[\dot A_i^a = \frac{{\not \partial A_i^a}}{{\not \partial \Phi _B^b}}\dot \Phi _B^b \to \frac{{\not \partial \dot A_i^a}}{{\not \partial \dot \Phi _B^b}} = \frac{{\not \partial A_i^a}}{{\not \partial \Phi _B^b}}\]

where the NANGM-action is given by:

    \[\int {{d^4}} x\prod _A^a\dot \Phi _A^a = \int {{d^4}} xE_i^a\dot A_i^a = \int {{d^4}} x\left( { - {E^{ai}}} \right)\dot A_i^a\]

and:

    \[\dot \Phi _A^a = \frac{{\not \partial \Phi _A^a}}{{\not \partial A_i^b}}\dot A_i^b\]

with conditions

    \[A_\mu ^a{A^{a\mu }} = {n^2}{M^2};\;{M^2} > 0;\,\mu = 0,1,2,3;\,a = 1,...,N\]

    \[{n_\mu }\]

an oriented constant vector,

    \[M\]

the Lorentz spontaneous symmetry breaking term,

    \[{M^2} > 0;{\mkern 1mu} \quad \mu = 0,1,2,3;{\mkern 1mu} a = 1,...,N\]

the Lorentz and gauge group indices with N-generators.

It follows from

    \[A_\mu ^a{A^{a\mu }} = {n^2}{M^2}\]

that there exists a nonzero vacuum expectation value:

    \[\left\langle {{A_\mu }} \right\rangle = {n_\mu }M\]

guaranteeing the spontaneous symmetry breaking of Lorentz invariance and the existence of Goldstone bosons, which follows from Goldstone’s theorem. One then parametrizes the Non-Abelian Nambu-Goldstone Model via

    \[\left\{ {\begin{array}{*{20}{c}}{A_0^a = {B^a}\left( {1 + \frac{N}{{4{B^2}}}} \right)}\\{A_3^a = {B^a}\left( {1 - \frac{N}{{4{B^2}}}} \right)}\end{array}} \right.\]

with:

    \[\left\{ {\begin{array}{*{20}{c}}{N = \left( {A_{\bar \iota }^bA_{\bar \iota }^b + {n^2}{M^2}} \right)}\\{4{B^2} \pm N \ne 0}\\{\bar \iota = 1,2}\end{array}} \right.\]

After substituting

    \[A_0^a = {B^a}\left( {1 + \frac{N}{{4{B^2}}}} \right)\]

in the Lagrangian density:

    \[{L^{NG}}\left( {A_\mu ^a} \right) = - \frac{1}{4}F_{\mu \nu }^a{F^{a\mu \nu }} - {J^{a\mu }}A_\mu ^a\]

we get the variation of the action relative to {B^a}A_{\bar \iota }^a, yielding the equation of motion:

    \[\delta A_{\bar \iota }^a:\,{\Im ^{\bar \iota a}} + \frac{{{B^a}}}{{2{B^2}}}\left[ {{\Im ^{0b}} - {\Im ^{3b}}} \right]A_{\bar \iota }^a = 0\]

with:

 

eq1

 

and

    \[{\Im ^{\nu a}} \equiv {\left( {{{\not D}_\mu }{F^{\mu \nu }} - {J^\nu }} \right)^a}\]

In the context of the SO(N) Yang Mills theory the equations of motion are {\Im ^{0a}} = 0

thus, we do not have current conservation:

    \[{\not D_\nu }{J^{\nu a}} = 0\]

due to the fact that the conditions:

    \[A_\mu ^a{A^{a\mu }} = {n^2}{M^2};\;{M^2} > 0;\,\mu = 0,1,2,3;\,a = 1,...,N\]

are not gauge-invariant. However, by imposing the Gaussian condition:

    \[{\Im ^{\bar \iota a}} = 0\]

we recover gauge-invariance of the Yang Mills equations of motion. With invertible coordinate transformation:

    \[A_i^a = A_i^a\left( {\Phi _A^b} \right)\]

its crucial transformation properties are:

    \[\dot A_i^a = \frac{{\not \partial A_i^a}}{{\not \partial \Phi _B^b}}\dot \Phi _B^b \to \frac{{\not \partial \dot A_i^a}}{{\not \partial \dot \Phi _B^b}} = \frac{{\not \partial A_i^a}}{{\not \partial \Phi _B^b}}\]

and

    \[\dot \Phi _A^a = \frac{{\not \partial \Phi _A^a}}{{\not \partial A_i^b}}\dot A_i^b\]

Let me proceed to the Hamiltonian aspect of the analytic-emergence relation between  SU(N)-Gauge-Theory and the non-Abelian Nambu-Goldstone model

Getting the exact Hamiltonian, let its density be expressed in terms of the conjugated variables \Phi _A^b\prod _A^b. Hence, given:

    \[A_0^a = A_0^a\left( {\Phi _A^b} \right)\]

and the substitution in the Lagrangian density above, one can split:

    \[{L^{NG}}\left( {A_\mu ^a} \right) = - \frac{1}{4}F_{\mu \nu }^a{F^{a\mu \nu }} - {J^{a\mu }}A_\mu ^a\]

as such:

    \[\begin{array}{l}{L^{NG}}_{na}\left( {\Phi ,\dot \Phi } \right) = \frac{1}{2}E_i^aE_i^a - \\\frac{1}{2}B_i^aB_i^a - {J^{a\mu }}A_\mu ^a\end{array}\]

with

    \[\left\{ {\begin{array}{*{20}{c}}{E_i^a = \dot A_i^a - {{\not D}_i}A_0^a}\\{B_i^a = \frac{1}{2}{\varepsilon _{ijk}}F_{jk}^a}\end{array}} \right.\]

thus, we get the canonically conjugated momenta:

    \[\prod _A^a = \frac{{\not \partial {L^{NG}}_{na}\left( {\Phi ,\dot \Phi } \right)}}{{\not \partial \dot \Phi _A^a}} = E_i^b\frac{{\not \partial \dot A_i^b}}{{\not \partial \dot \Phi _A^a}} = E_i^b\frac{{\not \partial A_i^b}}{{\not \partial \Phi _A^a}}\]

The inverse of

    \[A_i^a = A_i^a\left( {\Phi _A^b} \right)\]

allows us to express E_i^a as a function of the momenta \prod _A^b of the Non-Abelian Nambu-Goldstone Model in the following form:

    \[E_i^b\left( {\Phi ,\prod } \right) = \frac{{\not \partial \,\Phi _A^a}}{{\not \partial A_i^b}}\prod _A^a\]

Hence, and this is deep, the Wronskian of the system is

 

eq12

 

Which is gauge-invariant and exhibits parametric renormalization-group finiteness

Therefore, the Non-Abelian Nambu-Goldstone Model Hamiltonian density is:

    \[\begin{array}{l}{{\rm H}^d} = \prod _A^a\dot \Phi _A^a - \left( {\frac{1}{2}} \right.E_i^aE_i^a - \frac{1}{2}B_i^aB_i^a\\\left. { - {J^{a\mu }}A_\mu ^a} \right)\end{array}\]

successively expressed as:

    \[\begin{array}{l}{{\rm H}^d}\left( {\Phi ,\prod } \right) = \frac{1}{2}E_i^aE_i^a + \frac{1}{2}B_i^aB_i^a\\ - \left( {{{\not D}_i}E_i^b - {J^{b0}}} \right)A_0^b + {J^{ai}}A_i^a\end{array}\]

hence the dependence upon the canonical variables \Phi\prod can be gotten via change of variables w.r.t.

    \[A_i^a = A_i^a\left( {\Phi _A^b} \right)\]

    \[E_i^b\left( {\Phi ,\prod } \right) = \frac{{\not \partial \,\Phi _A^a}}{{\not \partial A_i^b}}\prod _A^a\]

so the canonical variables satisfy the Poisson bracket algebra

    \[\left\{ {\Phi _A^a\left( x \right),\Phi _B^b\left( y \right)} \right\} = 0\]

and

    \[\left\{ {\prod _A^a\left( x \right),\prod _B^b\left( y \right)} \right\} = 0\]

and

    \[\left\{ {A_A^a\left( x \right),\prod _B^b\left( y \right)} \right\} = {\delta ^{ab}}{\delta _{AB}}{\delta ^3}\left( {x - y} \right)\]

allowing us to derive the theory’s Hamiltonian action:

    \[\int {{d^4}} x\prod _A^a\dot \Phi _A^a = \int {{d^4}} xE_i^a\dot A_i^a = \int {{d^4}} x\left( { - {E^{ai}}} \right)\dot A_i^a\]

with

    \[\left( { - {E^{ai}}} \right)\]

the canonically conjugated momenta of A_i^a, and so,

    \[\left( {\Phi ,\prod } \right) \to \left( {A,B} \right)\]

hence, given:

    \[\begin{array}{l}{{\rm H}^d} = \prod _A^a\dot \Phi _A^a - \left( {\frac{1}{2}} \right.E_i^aE_i^a - \frac{1}{2}B_i^aB_i^a\\\left. { - {J^{a\mu }}A_\mu ^a} \right)\end{array}\]

we get:

    \[A_0^a = \frac{{A_3^a}}{{\sqrt {A_3^bA_3^b} }}\left( {\sqrt {A_i^bA_i^b + {n^2}{M^2}} } \right)\]

and since the transformations

    \[E_i^b\left( {\Phi ,\prod } \right) = \frac{{\not \partial \,\Phi _A^a}}{{\not \partial A_i^b}}\prod _A^a\]

are generated from change-of-variables,

    \[A_0^a = A_0^a\left( {\Phi _A^b} \right)\]

in coordinate space,

it follows from quantum-mechanics that the full transformation in the phase space is canonical. Thus, we can recover the Poisson bracket algebra

    \[\left\{ {\begin{array}{*{20}{c}}{\left\{ {A_i^a\left( x \right),A_j^b\left( y \right)} \right\} = 0}\\{\left\{ {{E^{ai}}\left( x \right),{E^{bj}}\left( y \right)} \right\} = 0}\\{\left\{ {A_i^a\left( x \right),{E^{bj}}\left( y \right)} \right\} = - {\delta ^{ab}}\delta _i^j{\delta ^3}\left( {x - y} \right)}\end{array}} \right.\]

So, the time-evolution of the Gaussian functions under the dynamics of the NANGM is given by:

 

eq123

 

with A_0^b determined by:

    \[{L^{NG}}\left( {A_\mu ^a} \right) = - \frac{1}{4}F_{\mu \nu }^a{F^{a\mu \nu }} - {J^{a\mu }}A_\mu ^a\]

When one imposes the Gaussian constraints as initial conditions:

    \[\left( {{\Omega ^a}\left( {t = {t_0}} \right) = 0} \right)\]

the standard Yang-Mills equations of motion are validly recovered at t = {t_0}, and given the antisymmetry of Maxwellian tensor, we get:

    \[0 = {\not D_\nu }{\Im ^{\nu a}} = {\not D_\nu }{\left( {{{\not D}_\mu }{F^{\mu \nu }} - {J^\nu }} \right)^a} = - {\not D_\nu }{J^{\nu a}} = 0\]

at t = {t_0}, and given

    \[\left\{ {\begin{array}{*{20}{c}}{{\Omega ^a}\left( {t = {t_0}} \right) = 0}\\{{{\not D}_\nu }{J^{\nu a}}\left| {_{t = {t_0}}} \right.}\end{array}} \right.\]

one gets:

    \[{\dot \Omega ^a}\left( {t = {t_0}} \right) = 0\]

solving, we get:

    \[\begin{array}{l}{{\dot \Omega }^a}\left( {t = {t_0} + \delta {t_1}} \right) = {\Omega ^a}\left( {t = {t_0}} \right) + \\{{\dot \Omega }^a}\left( {t = {t_0}} \right)\delta {t_1} + ..., = 0\end{array}\]

Therefore, the Yang Mills equations are now valid at t = {t_0} + \delta {t_1}, entailing, by Maxwellian conditions, current conservation also at t = {t_0} + \delta {t_1}.

So, we recover the SU(N) Yang-Mills theory by imposing the Gaussian laws as Hamiltonian metaplectic constraints, with functions {N^a} adding - {N^a}{\Omega ^a} to {{\rm H}^d}, thus getting a redefinition:

    \[A_0^a + {N^a}: = {\Theta ^a}\]

This leads to:

    \[{{\rm H}^d} = \frac{1}{2}\left( {{{\tilde E}^2} + {{\tilde B}^2}} \right) - {\Theta ^a}{\Omega ^a} + J_i^a{A^{ia}}\]

establishing, upon dimensional generalization, not only an emergent-relation between SU(N)-Gauge-Theory and Non-Abelian Nambu-Goldstone Model, but a stronger thesis:

an equivalence relation between them, thus avoiding, due to Goldstone’s theorem and the closure and completeness of the associated Poisson algebra, any violation of any Lorentz invariance.

Untitledtrurth3ufcyang

1 Response