Sign up with your email address to be the first to know about new products, VIP offers, blog features & more.

Calabi–Yau 3–Fold, Quantum Holomorphy and Batalin-Vilkoviski SYM-Analysis

Mathematical reason itself does not err ~ Kurt Gödel

Continuing from my last two posts, I finally derived, via Kähler-twisting relations

    \[\left\{ {\begin{array}{*{20}{c}}{{\Psi _m} = {\lambda ^\alpha }{\sigma _{\mu \alpha \dot 1}}e_m^\mu }\\{{\kappa _{\overline m \overline n }} = {{\overline \lambda }_{\dot \alpha }}\overline \sigma _{\mu \nu \dot 2}^{\dot \alpha }e_{\overline m }^\mu \,e_{\overline n }^\nu }\\{\kappa = \delta _{\dot 2}^{\dot \alpha }{{\overline \lambda }_{\dot \alpha }}}\end{array}} \right.\]

that on a hyper-Kähler manifold, by ‘constant spinor’ change-of-variables, we can identify

    \[\begin{array}{c}{S^{g \cdot f}} = \int\limits_{{M_4}} {{d^4}} x\sqrt g {\rm{Tr}}\left( {{F_{\overline m \overline n }}} \right.{F^{\overline m \overline n }} + \\\frac{1}{2}{\left| {{J_{m\overline n }}{F^{m\overline n }}} \right|^2} - 2{\varepsilon ^{\overline m \overline n pq}}{\kappa _{\overline m \overline n }}{{\not D}_p}{\Psi _q}\\ + \,i\kappa {J^{\overline m l}}{{\not D}_{\overline m }}\left. {{\Psi ^l}} \right)\end{array}\]

with the N = 1, D = 4 Yang–Mills action

    \[\begin{array}{c}{S_{SYM}} = \int\limits_{{M_4}} {{d^4}} x\sqrt g \frac{1}{4}{\rm{Tr}}\left( {{F_{\mu \nu }}} \right.{F^{\mu \nu }}\\ + {F_{\mu \nu }}{\overline F ^{\mu \nu }} + \overline \lambda {\gamma ^\mu }{{\not D}_\mu }\left. \lambda \right)\end{array}\]

getting the following deep relation between N = 2 SYM theory, topological quantum field theory, and Kähler-theory

that since N = 2 SYM theory is a TQFT, and its Poincare supersymmetric version is obtained by coupling the N = 1 Yang–Mills multiplet to a chiral multiplet in the adjoint representation of the gauge group, we get an expression of the N = 1 scalar theory as a TQFT on a Kähler manifold.

In this post, I will derive a connection between the Batalin-Vilkoviski action, which I will eventually show is crucial to M-theory‘s braneworld cosmology, indeed, to any quantum-cosmological model consistent with a quantum gravity theory.

For any Calabi–Yau three–fold C{Y_3} one can always use the holomorphic closed \left( {3,0} \right)–form {\Omega _{3,0}} and define {B_{3,1}} = {\Omega _{3,0}} \wedge {B_{0,1}} thus getting the transformed classical-BRST action

    \[{I_{cl}}\left( {A,{B_{0,1}}} \right) = \int\limits_{{M_6}} {{\Omega _{3,0}}} \wedge {\rm{Tr}}\left( {{B_{0,1}} \wedge F} \right)\]

with the corresponding BRST symmetry

    \[\left\{ {\begin{array}{*{20}{c}}{Q{A_m} = {\Psi _m} + {{\not D}_m}c}\\{Q{A_{\overline m }} = {{\not D}_{\overline m }}\,c}\\{Q{B_{\overline m }} = {{\not D}_{\overline m }}\,\chi - \left[ {c,{B_{\overline m }}} \right]}\\{Q\chi = - \left[ {c,\chi } \right]}\\{Qc = - \frac{1}{2}\left[ {c,c} \right]}\end{array}} \right.\]

whose invariance under the transformation of the B field is guaranteed by part of the Bianchi identity

    \[{\not D_{\left[ {\overline m \,\,{F_{\overline n \,\overline l }}} \right]}} = 0\]

and closed-ness of \Omega and the fact that the BRST action

    \[{I_{cl}}\left( {A,{B_{0,1}}} \right) = \int\limits_{{M_6}} {{\Omega _{3,0}}} \wedge {\rm{Tr}}\left( {{B_{0,1}} \wedge F} \right)\]

is invariant under the complexified gauge group GL\left( {N,\mathbb{C}} \right).

The BRST symmetry of

    \[\left\{ {\begin{array}{*{20}{c}}{Q{A_m} = {\Psi _m} + {{\not D}_m}c}\\{Q{A_{\overline m }} = {{\not D}_{\overline m }}\,c}\\{Q{B_{\overline m }} = {{\not D}_{\overline m }}\,\chi - \left[ {c,{B_{\overline m }}} \right]}\\{Q\chi = - \left[ {c,\chi } \right]}\\{Qc = - \frac{1}{2}\left[ {c,c} \right]}\end{array}} \right.\]

is derivable from the Batalin–Vilkoviski action

    \[\begin{array}{c}{S_{BV}} = \int\limits_{{M_6}} {\sqrt g } {d^6}x{\rm{Tr}}\left( {{\varepsilon ^{\overline m \overline p \overline q }}} \right.{B_{\overline m }}{F_{\overline p \overline q }}\\{ + ^ * }{B^{\overline m }}\left( {{{\not D}_{\overline m }}\chi - \left[ {c,{B_{\overline m }}} \right]} \right) + \\^ * {A^m}\left( {{\Psi _m} + {{\not D}_{\overline m }}c} \right){ + ^ * }\,{A^{\overline m }}{{\not D}_{\overline m }}c \cdot \\^ * {\Psi ^m}\left[ {c,{\Psi _m}} \right] + \left( { - \frac{1}{2}} \right.\left. {\left. {\left[ {c,c} \right]} \right)} \right)\end{array}\]

Now we must quantize the model, and the best way is to

quantize the theory around a non-perturbative vacuum corresponding to a stable holomorphic vector bundle, since in that context, the BF model correspond to the twisted version of a supersymmetric Yang–Mills theory

since it allows the BRST symmetry to be treated as ordinary gauge ones and fixed with transversality conditions on the {A_{\overline m }} and {B_{\overline m }}

    \[\left\{ {\begin{array}{*{20}{c}}{{{\not D}^{\overline m }}{A_{\overline m }} = 0}\\{{{\not D}^{\overline m }}{B_{\overline m }} = 0}\end{array}} \right.\]

The corresponding BV fermion identity follows then

    \[\not Z = \overline \chi {\not D^{\overline m }} + \overline c {\not D^{\overline m }}{A_{\overline m }}\]

So the shift symmetry on the \left( {0,1} \right) part of the connection gives rise to three degrees of freedom, while the symmetry on the B field to one and are collected into the ghost fields \left( {{\Psi _m},\chi } \right) respectively. In the non–perturbative case, the gauge fixing conditions are

    \[\left\{ {\begin{array}{*{20}{c}}{{F_{mn}} = - \frac{4}{3}{\varepsilon _{mnp}}{B^p}}\\{{J^{\overline m \,n}} = 0}\end{array}} \right.\]

Notice that {J^{\overline m \,n}} = 0 reduces the complex gauge group GL\left( {N,\mathbb{C}} \right) to the unitary group U\left( N \right) and can be interpreted as a partial gauge-fixing for the complex gauge symmetry of

    \[{I_{cl}}\left( {A,{B_{0,1}}} \right) = \int\limits_{{M_6}} {{\Omega _{3,0}}} \wedge {\rm{Tr}}\left( {{B_{0,1}} \wedge F} \right)\]

The BV fermion corresponding to

    \[\left\{ {\begin{array}{*{20}{c}}{{F_{mn}} = - \frac{4}{3}{\varepsilon _{mnp}}{B^p}}\\{{J^{\overline m \,n}} = 0}\end{array}} \right.\]

where \left( {{{\overline \chi }^{\overline m \,\overline n }},\overline \eta } \right) are the antighosts associated to BV gauge–fixing conditions and whose BV action is given

    \[\begin{array}{c}{S_{{\rm{aux}}}} = \int\limits_{{M_6}} {\sqrt g } {d^6}x{\rm{Tr}}{\left( {^ * \overline \chi } \right._{\overline m \overline n }}{h^{\overline m \overline n }} + \\^ * \overline \eta h + \left. {^ * \overline {c\,} b} \right)\end{array}\]

Now, by eliminating the anti–fields by means of

    \[^ * \phi = \frac{{\delta Z}}{{\delta \phi }}\]

and implementing the gauge–fixing conditions

    \[\left\{ {\begin{array}{*{20}{c}}{{F_{mn}} = - \frac{4}{3}{\varepsilon _{mnp}}{B^p}}\\{{J^{\overline m \,n}} = 0}\end{array}} \right.\]

and by integration on the Lagrangian multipliers, we get from

    \[\begin{array}{c}{S_{BV}} = \int\limits_{{M_6}} {\sqrt g } {d^6}x{\rm{Tr}}\left( {{\varepsilon ^{\overline m \overline p \overline q }}} \right.{B_{\overline m }}{F_{\overline p \overline q }}\\{ + ^ * }{B^{\overline m }}\left( {{{\not D}_{\overline m }}\chi - \left[ {c,{B_{\overline m }}} \right]} \right) + \\^ * {A^m}\left( {{\Psi _m} + {{\not D}_{\overline m }}c} \right){ + ^ * }\,{A^{\overline m }}{{\not D}_{\overline m }}c \cdot \\^ * {\Psi ^m}\left[ {c,{\Psi _m}} \right] + \left( { - \frac{1}{2}} \right.\left. {\left. {\left[ {c,c} \right]} \right)} \right)\end{array}\]

and

    \[\begin{array}{c}{S_{{\rm{aux}}}} = \int\limits_{{M_6}} {\sqrt g } {d^6}x{\rm{Tr}}{\left( {^ * \overline \chi } \right._{\overline m \overline n }}{h^{\overline m \overline n }} + \\^ * \overline \eta h + \left. {^ * \overline {c\,} b} \right)\end{array}\]

the (g.f.)-action

    \[\begin{array}{c}{S^{g.f.}} = \int\limits_{{M_6}} {{d^6}} x\sqrt g {\rm{Tr}}\left( { - \frac{3}{2}} \right.{F^{\overline m \overline n }} + \\\left| {{J^{m\overline n }}{F_{m\overline n }}} \right|\left. {^2} \right) + {\overline \chi ^{\overline m \overline n }}{{\not D}_{\left[ {\overline m \,{\Psi _{\overline n }}} \right]}} + \\2i\overline \eta {J^{\overline m n}}{J^{m\overline n }}{{\not D}_{\overline m }}{\Psi _n} + \frac{4}{3}{\varepsilon _{\overline m \overline n \overline p }} \cdot \\{\overline \chi ^{\overline m \overline n }}{{\not D}^{\overline p }}\left. {\overline \chi } \right)\end{array}\]

and by the identity

    \[\begin{array}{c} - \frac{1}{4}{\rm{Tr}}\left( {F \wedge * F} \right) + J \wedge {\rm{Tr}}\left( {F \wedge F} \right)\\ \cdot {\rm{Tr}}\left( { - \frac{3}{2}{F^{\overline m \overline n }}} \right.{F_{^{\overline m \overline n }}} + \left| {{J^{^{\overline m \overline n }}}{F_{^{\overline m \overline n }}}} \right|\left. {^2} \right)\end{array}\]

we can recognize in the first line of the (g.f.)-action the bosonic part of the N=1 D=6 SYM action, modulo the topological density J \wedge {\rm{Tr}}\left( {F \wedge F} \right), where J is the Kähler two–form. Concerning the fermionic part, one can use of the mapping between chiral fermions and complex forms

    \[{S_ \pm } \otimes \mathbb{C} \sim \Omega _{{\rm{even}}}^{{\rm{odd}}}\]

to map the topological ghosts \left( {{\Psi _m},\chi } \right) into the right–handed spinor \overline \lambda and the topological antighosts into the left–handed spinor \lambda. Hence, one can use the covariantly constant spinor \zeta of the Calabi–Yau three-fold to perform the mapping

    \[\left\{ {\begin{array}{*{20}{c}}{{\Psi _m} \to \overline \lambda {\Gamma _m}\zeta }\\{\chi \to \overline \chi \zeta }\\{{{\overline \chi }^{\overline m \overline n }} \to \zeta \,{\Gamma ^{\overline m \overline n }}\lambda }\\{\overline \eta \to {\varepsilon _{\overline m \overline n \overline p }}\zeta }\end{array}} \right.\]

In this way, one can see in the (g.f.)-action the twisted version of the N = 1 D = 6 Super Yang–Mills action