Sign up with your email address to be the first to know about new products, VIP offers, blog features & more.

Quantum Cohomology Algebra, the Dubrovin Connection and Holomorphy

The art of doing mathematics consists in finding that special case which contains all the germs of generality ~ David Hilbert

Continuing my analysis of quantum cohomology here, where I derived, for a Witten-section

    \[\sum\nolimits_{j = 0}^s {{y_j}} {\left[ {{P_j}} \right]^ * }\]

that it is covariant constant if the following expression is zero for all k

 

    \[\begin{array}{c}\left( {\nabla _{{{\not \partial }_i}}^*{{\sum\limits_{j = 0}^s {{y_i}\left[ {{P_j}} \right]} }^*}} \right)\left[ {{P_k}} \right] = \\\begin{array}{*{20}{c}}{\left( {\sum\limits_{j = 0}^s {{{\not \partial }_i}{{\left[ {{P_j}} \right]}^*} + \sum\limits_{j = 0}^s {{y_i}\nabla _{{{\not \partial }_i}}^*{{\left[ {{P_j}} \right]}^*}} } } \right)}\\{ \cdot \left[ {{P_k}} \right]}\end{array} = \\{{\not \partial }_i}{y_k} - \sum\limits_{j = 0}^s {{y_j}} \left( {{{\left[ {{P_j}} \right]}^*}\sum\limits_{l = 0}^s {\Omega _{lk}^i\left[ {{P_k}} \right]} } \right)\\ \cdot {{\not \partial }_i}{y_k} - \sum\limits_{j = 0}^s {{y_j}{\mkern 1mu} } \Omega _{lk}^i\end{array}\]

in this post, I will derive the second-order holomorphic Dubrovin equivalence relation of the associated quantum algebra. Let us recall that the Dubrovin connection is a meromorphic flat connection \nabla on

    \[{\widetilde \pi ^ * }\overline T M \cong {H_X} \times \left( {M \times {{\widetilde A}^1}} \right)\]

defined by

    \[{\nabla _{\frac{{\not \partial }}{{\not \partial {t_i}}}}} = \frac{{\not \partial }}{{\not \partial {t_i}}} - \frac{1}{z}\left( {{\phi _i} * } \right)\]

    \[{\nabla _{z\frac{{\not \partial }}{{{{\not \partial }_z}}}}} = z\frac{{\not \partial }}{{{{\not \partial }_z}}} + \frac{1}{z}\left( {E * } \right) + \mu \]

0 \le i \le N and z the coordinate on {\widetilde A^1}, and by the Poincaré pairing property, the Dubrovin connection equips M with a Frobenius manifold with extended structure connection, and thus the genus-zero Gromov–Witten potential F\,_X^0 converges to an analytic function, allowing a definition of a Fredholm-Calabi-Yau measure for the Kähler–Witten integral, due to the quantum product *

    \[\int_{{{\left[ {{X_{g,n.d}}} \right]}^{{\rm{vir}}}}} {\prod\limits_{k = 1}^{k = n} {{\rm{ev}}\,_k^ * } } \left( {{a_k}} \right) \cup \psi \,_k^{ik}\]

and allows the Gromov–Witten invariants

    \[\left\langle {{a_1}\psi _1^{{i_1}},...,{a_n}\psi _n^{{i_n}}} \right\rangle \,_{g,n,d}^X\]

to be metaplectic invariants on the homotopy group-manifold of X again due to, and since it is, equipped with the quantum product *. Also recalling that M is a compact Kähler manifold of complex dimension n, whose cohomology algebra, with complex coefficients, is of the form

    \[{H^ * }M = \mathbb{C}\left( {{b_1},...,{b_r}} \right)/\left( {{R_{1,}}...,{R_u}} \right)\]

with {b_1},...,{b_r} are additive generators of {H^ * }M and {R_1},...,{R_u} and are polynomials relations in {b_1},...,{b_r}. It follows from the Bernstein–Sato polynomial function, that the quantum cohomology algebra is of the form

    \[Q{H^ * }M = \mathbb{C}\left( {{b_1},...,{b_r}} \right)/K\left[ {\widetilde {{{\not R}_1}},...,\widetilde {{{\not R}_u}}} \right]\]

where K = \mathbb{C}\left( {{q_1},...,{q_r}} \right) and each \widetilde {{{\not R}_i}} is a q-deformation of {R_i} and {q_i} are

functions

    \[{q_i}:t = \sum\nolimits_{j = 1}^r {{t_i}} {b_i}{ \to ^\dagger }{e^{{t_i}}}\]

on {H^ * }M. Now, quantum cohomology theory gives, in addition to Q{H^ * }M, a quantum product operation on {H^ * }M, and so, the Dubrovin connection above is expandable as

    \[\nabla \equiv d + \frac{1}{h}\omega \]

on the bundle {\mathbb{C}^r} \times {\mathbb{C}^{s + 1}} \to {\mathbb{C}^r} with \omega is the complex {\rm{End}}{\mathbb{C}^{s + r}}-valued 1-form on {\mathbb{C}^r} defined by

    \[{\omega _t}(x)(y) = x{ \circ _t}y\]

with h is a non-zero complex parameter, so actually we have a family of connections.

Hence,

Theorem: for any h the connection

    \[\nabla \equiv d + \frac{1}{h}\omega \]

is flat, thus

    \[d\omega = \omega \wedge \omega = 0\]

The proof is given here.

Now introduce the ring {D^h} of differential operators generated by h{\not \partial _1},...,h{\not \partial _r} with coefficients in K\left[ h \right], and let me define a quantization of the cohomology algebra {A^{QC}} and D-module {M^h} = {D^h}/\left( {D_1^h,...,D_u^h} \right) such that {M^h} is free over K\left[ h \right] of rank s + 1,  and

    \[\mathop {\lim }\limits_{h \to 0} S\left( {D_i^h} \right) = \widetilde {{{\not R}_i}}\]

where S\left( {D_i^h} \right) is the result of replacing h{\not \partial _1},...,h{\not \partial _r} by {b_1},...,{b_r} in D_i^h for i = 1,...,u.

Now define the quantum algebraic connection form

    \[{\Omega ^h} = \sum\nolimits_{i = 1}^r {\Omega _i^h} d{t_i}\]

via

    \[\left\{ {\begin{array}{*{20}{c}}{\left[ {{{\not \partial }_i}{P_i}} \right] = \sum\nolimits_{k = 0}^s {{{\left( {\Omega _i^h} \right)}_{kj}}\left[ {{P_k}} \right]} }\\{\left[ {{b_i}{c_j}} \right]\sum\nolimits_{k = 0}^s {{{\left( {{\omega _i}} \right)}_{kj}}\left( {{c_k}} \right)} }\end{array}} \right.\]

It follows then that h\,{\Omega ^h} is polynomial in h, so {\Omega ^h} is hence of the form

    \[{\Omega ^h} = \frac{1}{h}\omega + {\theta ^{\left( 0 \right)}} + h\,{\theta ^{\left( 0 \right)}} + ... + h{\theta ^{\left( p \right)}}\]

where

    \[\omega = \sum\nolimits_{i = 1}^r {{\omega _i}} d{t_i}\]

and {\theta ^{\left( 0 \right)}},...,{\theta ^{\left( p \right)}} are matrix-valued 1-forms, and p is a non-negative integer depending on the relations \widetilde {{{\not R}_1}},...,\widetilde {{{\not R}_u}}.

Which brings me to the proposition of this post: since {\Omega ^h} depends holomorphically on q = \left( {{q_1},...,{q_r}} \right), for q in some open subset V, then, for any point {q_0} in V, there is a neighbourhood {U_0} of {q_0} on which the connection

    \[\nabla = d + {\Omega ^h}\]

is gauge equivalent to a connection

    \[\widehat \nabla = d\,{\widehat \Omega ^h}\]

with

    \[{\widehat \Omega ^h} = \frac{1}{h}\widehat \omega \]

    \[\widehat \omega = {Q_0}\omega Q_0^{ - 1}\]

for the holomorphic Dubrovin equivalence relation map

    \[{U_0}:{U_0} \to G{L_{s + 1}}\mathbb{C}\]

with L the Laurent expansion.

The proof is given here.

Next post, we should dive into Fano analysis.

Mathematics is the only good metaphysics ~ William Thomson