Sign up with your email address to be the first to know about new products, VIP offers, blog features & more.

Galois Action, Quantum D-Modules and Orbifold Gromov–Witten Theory

We could present spatially an atomic fact which contradicted the laws of physics, but not one which contradicted the laws of geometry ~ Ludwig Wittgenstein

In my last six posts, I finally showed that the quantum cohomological product { \bullet _\iota } is a family of commutative, associative products on H_{orb}^ * \left( \chi \right) \otimes \mathbb{C}{\left[ {{\rm{Ef}}{{\rm{f}}_\chi }} \right]_f} parametrized by \tau \in H_{orb}^ * \left( \chi \right), which is defined by the formula

    \[\begin{array}{*{20}{c}}{\alpha { \bullet _\iota }\beta = \sum\limits_{d \in {\rm{Ef}}{{\rm{f}}_\chi }} {\sum\limits_{l{\kern 1pt} \ge 0} {\sum\limits_{k = 1}^N {\frac{1}{{l!}}} } } \cdot }\\{\left\langle {\alpha ,\beta ,\tau ,...,\tau ,{\phi _k}} \right\rangle _{o,l,d}^\chi {Q^d}{\phi ^k}}\end{array}\]

long-form,

    \[\alpha { \bullet _\iota }\beta = \sum\limits_{d \in {\rm{Ef}}{{\rm{f}}_\chi }} {\sum\limits_{l{\kern 1pt} \ge 0} {\sum\limits_{k = 1}^N {\frac{1}{{l!}}} } } \left\langle {\alpha ,\beta ,\tau ,...,\tau ,{\phi _k}} \right\rangle _{o,l,d}^\chi {Q^d}{\phi ^k}\]

with {Q^d} the element of the group ring H_{orb}^ * \left( \chi \right) \otimes \mathbb{C}{\left[ {{\rm{Ef}}{{\rm{f}}_\chi }} \right]_f} corresponding to d \in {\rm{Ef}}{{\rm{f}}_\chi }. Now, decomposing \tau \in H_{orb}^ * \left( \chi \right) as

    \[\left\{ {\begin{array}{*{20}{c}}{\tau = {\tau _{o,2}} + \tau '}\\{{\tau _{o,2}} \in {H^2}\left( \chi \right)}\\{\tau ' \in \underbrace {\widehat \oplus }_{k \ne 1}{H^{2k}}\left( \chi \right) \oplus \widehat \oplus {H^ * }\left( {{\chi _\nu }} \right)}\end{array}} \right.\]

we finally get, by the Picard-divisor rank formula, the third proposition of the last post:

proposition three: the quantum product can be viewed as a formal power series in {e^{{\tau _{o,2}}}}Q and \tau '

    \[\alpha { \bullet _\iota }\beta = \sum\limits_{d \in {\rm{Ef}}{{\rm{f}}_\chi }} {\sum\limits_{l\, \ge 1pt \ge 0} {\sum\limits_{k = 1}^N {\frac{1}{{l!}}} } } \left\langle {\alpha ,\beta ,\tau ',...,\tau ',{\phi _k}} \right\rangle _{o,l + 3,d}^\chi {e^{\left\langle {{\tau _{o,2,d}}} \right\rangle }}{Q^d}{\phi ^k}\]

vertically,

    \[\begin{array}{l}\alpha { \bullet _\iota }\beta = \sum\limits_{d \in {\rm{Ef}}{{\rm{f}}_\chi }} {\sum\limits_{l\, \ge 1pt \ge 0} {\sum\limits_{k = 1}^N {\frac{1}{{l!}}} } } \cdot \\\left\langle {\alpha ,\beta ,\tau ',...,\tau ',{\phi _k}} \right\rangle _{o,l + 3,d}^\chi {e^{\left\langle {{\tau _{o,2,d}}} \right\rangle }}{Q^d}{\phi ^k}\end{array}\]

with

    \[{e^{\left\langle {{\tau _{o,2,d}}} \right\rangle }}{Q^d}{\phi ^k}\]

being the orbifold Poincaré ‘term’ and implies that the product {o_\tau } defines an analytic family of commutative rings \left( {{H_{orb}}\left( \chi \right),{o_\tau }} \right) over I\chi, hence yielding the following deep (as we shall see) relation:

    \[{o_\tau } \equiv { \bullet _\iota }\left| {_{Q = 1}} \right.\]

with {o_\tau } the orbifold quantum product.

Keep this identity in mind, it will be key to this post’s proposition

    \[{e^{ - 2\pi \widehat i\left\langle {{\xi _o},d} \right\rangle }}\prod\limits_{i = 1}^l {{e^{2\pi \widehat i{f_{{\nu _1}}}\left( \xi \right)}}} = 1\]

Now let me study {o_\tau } \equiv { \bullet _\iota }\left| {_{Q = 1}} \right. further in this post and derive one more (of many) propositions. Now, given that the orbifold quantum product {o_\tau } is convergent over an open set  {I_\chi } \subset H_{orb}^ * \left( \chi \right) of the form

    \[{I_\chi } = \left\{ {\begin{array}{*{20}{c}}{\tau \in H_{orb}^ * \left( \chi \right)}\\{\Re \left\langle {{\tau _{0,2,d}}} \right\rangle \le - M}\\{\forall d \in {\rm{Ef}}{{\rm{f}}_\chi }\backslash \left\{ 0 \right\}}\\{\left\| {\tau '} \right\| \le {e^{ - M}}}\end{array}} \right.\]

for a large M > 0, where \tau = {\tau _{0,2}} + \tau ' is the decomposition in

    \[\left\{ {\begin{array}{*{20}{c}}{\tau = {\tau _{o,2}} + \tau '}\\{{\tau _{o,2}} \in {H^2}\left( \chi \right)}\\{\tau ' \in \underbrace {\widehat \oplus }_{k \ne 1}{H^{2k}}\left( \chi \right) \oplus \widehat \oplus {H^ * }\left( {{\chi _\nu }} \right)}\end{array}} \right.\]

and \left\| \cdot \right\| is the metaplectic norm on H_{orb}^ * \left( \chi \right), the domain {I_\chi } then has the following large radius limit direction conditions

    \[\left\{ {\begin{array}{*{20}{c}}{\Re \left\langle {{\tau _{0,2,d}}} \right\rangle }\\{\forall d \in {\rm{Ef}}{{\rm{f}}_\chi }\backslash \left\{ 0 \right\}}\\{\tau ' \to 0}\end{array}} \right.\]

Under such large radius limit,  {o_\tau } goes to the orbifold cup product { \cup _{ORB}}. Now associate a meromorphic quantum D-module to the orbifold quantum cohomology and introduce quantum D-module-automorphic Galois action and take a homogeneous basis \left\{ {{\phi _k}} \right\}_{k = 1}^N of H_{orb}^ * \left( \chi \right) and let \left\{ {t'} \right\}_{k = 1}^N be the linear co-ordinate system on H_{orb}^ * \left( \chi \right) dual to \left\{ {{\phi _k}} \right\}_{k = 1}^N and let

    \[\tau = \sum\nolimits_{k = 1}^N {t'} {\phi _k}\]

be a general point on {I_\chi } \subset H_{orb}^ * \left( \chi \right) with \left( {\tau ,z} \right) be a general point on {I_\chi } \times \mathbb{C} and \left( - \right):{I_\chi } \times \mathbb{C} \to {I_\chi } \times \mathbb{C} be the map sending \left( {\tau ,z} \right) to \left( {\tau , - z} \right).

So, let the quantum D-module be the tuple \left( {F,\nabla ,{{\left( {.,.} \right)}_F}} \right) consisting of the holomorphic vector bundle F: = {H^ * }\left( \chi \right) \times {I_\chi } \times \mathbb{C} \to {I_\chi } \times \mathbb{C}, the meromorphic flat connection \nabla

    \[\left\{ {\begin{array}{*{20}{c}}{{\nabla _k} = {\nabla _{\frac{{\not \partial }}{{\not \partial {t^k}}}}} = \frac{{\not \partial }}{{\not \partial {t^k}}} + \frac{1}{z}{\phi _k}{o_\tau }}\\{{\nabla _{z{{\not \partial }_z}}} = z\frac{{\not \partial }}{{\not \partial z}} - \frac{1}{z}E{o_\tau } + \mu }\end{array}} \right.\]

with the \nabla-flat pairing {\left( {.,.} \right)_F} being

    \[{\left( {.,.} \right)_F}:{\left( - \right)^*}\vartheta \left( F \right) \times \vartheta \left( F \right) \to {\vartheta _{{I_\chi } \times \mathbb{C}}}\]

which is induced from the orbifold Poincaré pairing

    \[{F_{\left( {\tau , - z} \right)}} \times {F_{\left( {\tau ,z} \right)}} = H_{orb}^ * \left( \chi \right) \times H_{orb}^ * \left( \chi \right) \to \mathbb{C}\]

with E \in \vartheta \left( F \right) being the Euler vector field

    \[\begin{array}{c}E: = {c_1}\left( {T\chi } \right) + \sum\limits_{k = 1}^N {\left( {1 - \frac{1}{2}{\rm{deg}}{\varphi _k}} \right)} \\ \cdot t'{\phi _k}\end{array}\]

and \mu \in {\rm{End}}\left( {H_{orb}^ * \left( \chi \right)} \right) being the Hodge grading operator

    \[\mu \left( {{\phi _k}} \right): = \left( {\frac{1}{2}{\rm{deg}}{\phi _k} - \frac{n}{2}} \right){\phi _k}\]

Note that the flat connection \nabla is the Dubrovin connection. Hence, the connection \nabla defines a map

    \[\begin{array}{c}\nabla :\vartheta \left( F \right) \to \vartheta \left( F \right)\left( {{I_\chi } \times \mathbb{C}} \right)\\{ \otimes _{U \times \mathbb{C}}}\left( {{{\widehat \pi }^ * }\Omega _U^1 \oplus {\vartheta _{U \times \mathbb{C}}}\frac{{dz}}{z}} \right)\end{array}\]

with U \equiv {T^\dagger }_{{I_\chi }} and \widehat \pi :U \times \mathbb{C} \to U the Picard-projection. Identify {\phi _i} with the vector field \not \partial /\not \partial {t^i}: thus, one can view E as the vector field over U

    \[\begin{array}{c}E = \sum\limits_{k = 1}^N {{r_k}} \frac{{\not \partial }}{{\not \partial {t^k}}} + \sum\limits_{k = 1}^N {\left( {1 - \frac{1}{2}{\rm{deg}}{\phi _k}} \right)} \\ \cdot \,t'\frac{{\not \partial }}{{\not \partial {t^k}}}\end{array}\]

where {c_1}\left( \chi \right) \equiv \sum\nolimits_{k = 1}^N {{r_k}{\phi _k}}. Realizing the crucial point: that the Euler-grading vector field satisfies the property

    \[Gr: = 2\left( {{{\widehat \nabla }_{z{{\not \partial }_z}}} + {{\widehat \nabla }_E} + \frac{n}{2}} \right)\]

we are ready to state the proposition of this post. Let {H^2}\left( {\chi ,\mathbb{Z}} \right) refer to the cohomology of the constant sheaf \mathbb{Z} on the topological stack X but not on the corresponding topological space. This group defines the set of isomorphism classes of topological orbifold line bundles on X. Letting {L_\xi } \to \chi be the orbifold line bundle corresponding to \xi \in {H^2}\left( {\chi ,\mathbb{Z}} \right) and 0 \le {f_\nu }\left( \xi \right) < 1 be the rational number such that the stabilizer of {\chi _\nu }\quad {\rm{,}}\quad \nu \in {\rm{T}} acts on

    \[{L_\xi }\left| {_{{\chi _\nu }}} \right.\]

via a complex number

    \[\exp \left( {2\pi \widehat i{f_\nu }\left( \xi \right)} \right)\]

with {f_\nu }\left( \xi \right) the symplectic-age of {L_\xi } along {\chi _\nu }.

So now, we are in a position to state proposition four:

For \xi \in {H^2}\left( {\chi ,\mathbb{Z}} \right), the bundle isomorphism of F defined by

    \[H_{orb}^ * \left( \chi \right) \times \left( {U \times \mathbb{C}} \right) \to H_{orb}^ * \left( \chi \right) \times \left( {U \times \mathbb{C}} \right)\]

    \[\left( {\alpha ,\tau ,z} \right) \to '\left( {dG\left( \xi \right)\alpha ,G\left( \xi \right)\left( {\tau ,z} \right)} \right)\]

gives an automorphism of the quantum D-module that preserves the flat connection \nabla and the pairing {\left( {.,.} \right)_F}, with G\left( \xi \right),

    \[dG\left( \xi \right):H_{orb}^ * \left( \chi \right) \to H_{orb}^ * \left( \chi \right)\]

are defined by

    \[\begin{array}{c}G\left( \xi \right)\left( {{\tau _0} \oplus \underbrace {\widehat \otimes }_{\nu \in T'}{\tau _0}} \right) = \\\left( {{\tau _0} - 2\pi \widehat i{\xi _0}} \right) \oplus \underbrace {\widehat \otimes }_{\nu \in T'}{e^{2\pi \widehat i{f_\nu }\left( \xi \right)}}{\tau _0}\end{array}\]

    \[\begin{array}{c}dG\left( \xi \right)\left( {{\tau _0} \oplus \underbrace {\widehat \otimes }_{\nu \in T'}{\tau _0}} \right) = \\{\tau _0} \oplus \underbrace {\widehat \otimes }_{\nu \in T'}{e^{2\pi \widehat i{f_\nu }\left( \xi \right)}}{\tau _0}\end{array}\]

where {\tau _\nu } \in {H^ * }\left( {{\chi _\nu }} \right) and {\xi _0} is the image of \xi in the \chiquantum D-module: and this is the Galois action of {H^2}\left( {\chi ,\mathbb{Z}} \right) on \chiquantum D-module.

The proof is left as an exercise with one hint: use

    \[{e^{ - 2\pi \widehat i\left\langle {{\xi _o},d} \right\rangle }}\prod\limits_{i = 1}^l {{e^{2\pi \widehat i{f_{{\nu _1}}}\left( \xi \right)}}} = 1\]

I accept no principles of physics which are not also accepted in mathematics ~ René Descartes